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ABSTRACT

We extend our previous aunnlysis of neavy paveicle
eifects in low energy light particle seltor ro quanium
chromodyaanics. The central techniq{? used is Ward-
Takahashi identities due to Becchi-Rouvev-Stora transformations.
Some discussion of isolation of mass singularities is
given. An important vesult In our approach, as before,
is to give precisc meaning t~ the notion of an effective
Lagrangian {which is rcavrmalized with calculable effective
coupling constants. " The counter terms for .he effective
local vertices in the Lagrangian sre self-generated by the
" theory, while the effective couplﬁng constants obey a set
of Callan-Symanzik-1like equations. The present article is

self-conta ned.



L. INTRODUCTICN

Tr, several articles recenrly written by us} a2 formalisn
was laid, through which one can systematic2lly and reliably
investigate effects of hezvy particlés on right mzrticle
sector in low energy —egion. This is Jdone via factevized

Tacal operators with calculable universal coefficients.

1y

ar effective Lagrangian is thus gilven.

iy

A precise definizion o

¢

Xlthough these szme resulis zre anticipateld In theories
without spontancously broken symmeiry, the concrete medel

studied was quantum electrodynamics (QED) with heavy

dynamics (QCD) 25 a viable theory of streag Inmteraction,
it is of some urzency that we should expiicitly demonstrate
the validity of our technique in this arena. One cen then
cfficiently assess effects of heavy quarks in precasses
below their production thresholds. This we have succeeded
in doing., The formal aspects will be given in the present
article; in a sequel, we shall report on a detailed
calculecion with application ts e‘ec” total smnihilation
cross-section.

In I, it is established that if M is the generic
wass of the heavy particlés, if all the external momenta

of the proper smputated a light particle Green®s functien
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™ are small compared to M, and if the scale p at which it
is subtracted for rencrmalization is alsc small {p << M),

then we haveZ:3

0
1

-n - *
Véull theory ight theory

. (0.) « o(1/¥%)
(I-1)

where *‘full theory' means that the defining Lagrangian

=

n
t % rlight theory
i

includes both the heavy and the light fields, and 'light
theory' has only light components. C;'s have all the large '
mass Jdcpendence in zthe form of 1n(Mz)rand are calculable

via a set of Calian-Symanzik-like equations? Oi‘s are
(integrated)’ local operators whose densities have nalve
dimensions less than or equal to six.

There atc two elements in I on which variation and/or
improvement in argument seem desirable in extending our
analysis to QCD. 1t should be helpful to have a procedure
whiéh enconpasses both gauge invariance and remormalization
simultancously. (In I, these two aspects were implemeﬁted
somewhat independcntly.) We would also like to give an
explicit discussion of how infrared and collinear singularities
are lsolated in thclcontext of QCD.

A major difference between QED and QCD is their
distinct gauge transformation properties. For the Abelian

gauge theory, the Ward-Takahashi (W-T) identities are



1izear and simple, This allowed us in I tO Iupose gauge
invariance with ezse. Ia fact, O;'s are all manifeszly

gatge invariant in QED.

L

When it comes to QCD, the non-abelian nature &f ithe
gauge transformations leads to W-T identities which ave
essentially non-linear. This wmakes an attack on the

present problem via the Zimmermann's®

anzlysis as in
impractical. As it turns out, because we are interested
only in lle effects, it is possible to ilinearize the W-T
identities in loop expansion. In peint of facr, the W-T
Identities together with power counting are sufficient to
establish Eq. (1} in QCD. Needless to say, ir hind-sight,
one can do likewise for QED.

Ancther technical point which needs some modification
in QCD is the renormalization procedure. In T, the
fermions are assumed to be maésive. There is nc collinear
singularity and we conveniently chcose to renormalize
the operators at zero external momenta, which is the most
natural point in the context of Zimmermann®s analysis.
This we cannct do in QCD. We must renormalize at some
Eucledean point py, which will inevitably induce operators
of dimension four together with those of dimension six.

How these lower dimension operators aze renormalized will

have to be considered.



The relevant observation to make in order to by-pass
this appsrent complication is the following: it should be
noted that the right hand side of Eg. (1} is merely an
algebraic rearrangement of a renormalized series, i.e.
r?ull theory” In other words, wé are adding and subtracting
the same quantities order by order in r?ull theory Th}s is
how the effective local operators O; are induced and the
cocificients C; extracted. Thus, we may choose as we please

. P N . n
how to render O, finite, irrespcctive of how I are

- - . . Tt
- - L1 ™
renormalized. The normalization conditioms onr Pfull theory

n
light theory

procedure.

and T are a1l we need to define the renormalization

The plan of this paper is as follows: In the next
section, we shall briefly review the Becchi-Rouet-Stora
(BRS) transformatinn.6 Tﬁe aim is to establish notations
and tordefive the W-T identities.

In Section III, we shall assume the vatidity of certain
power counting results, which can be straightforwardly
inferred from our argument in I. Then, we shall de;ive
Eq. (1) inductively by loop expansion. We shall see that
the local operators are precisely the set dictated by W-T
identities. Some remarks on infrared and collinear
singularity factorization will be made here.

In Section IV, we shall writc down a set of renormalization
group equatioms for Ci's. Only massless 1ight quarks will be
considered. ' )

A brief conclusion will be given in Section V.



1. WARD-TAXKAHASHI IDENTITIES

In this section we shall develop motations for QCD
and discuss BRS transforméﬁions, which will give us a set
of local W-T identities.

The hermittan generators for the f{urdazmental representation
in SU{N), te which the quark fields ¢a(a = 1,N) belong, are

' el
13!2 {a = 1, N°-1). They ssatisfy the comamutaticn relation
¥

. a
3 N
zxa/z. A/l = 21 fabc ~5 (¥1-1)
where fabc are the totally sntisymmetrric real siructure

constants. We intrcduce the zntihermitian matrice:s

T, = A /2, : C1r-2)

-

to form the matrix fields

- ~a
Au Auta'
U a3

v~ Fias

C =T, C=cCT, {(11-3)
where a and é; are, respectively, the ghost and the antighost
fields. The covariant derivative is

nu - au . gohu | fI1-4)

The QCD Lagrangian in linear gauges is
"eff - %‘ Tr[Fquw) ¢ .5 (1D-n°}¢'
el rraaM? e 2 Tr(Ea, [DY,])  (11-5)
og M " .

where the trace is taken over the internal symmetry. We



put carets. 1o indicate operator fields. We need not assign
an index for flavors at this stage. This Lagraagian 15

- 6
invariant under the BRS transforzations

§;,A, = [D,cl8x ,

u .
§,¥ = g, < v &, ‘x;" %o v c 8,
-~ 1 " ~ o~
ch " 5 B, fc,.c] &X,
fudl 1 “u -

where 6A is an anticommuting global gauge function which

carries a ghost number -1. L
It proves convenient to introduce sources into the

theory to; facilitate construction of Green's functions and

discussion of gauge properties. Thus, we write

£~ Locr Y& ML PP . - {11-7)
where
‘s._ Ju}\a * Ny *u ¢ Wc; Ta
+ T, c, v, 8, ' {1I-8)

contains sources for the primary fields, and
- . a au ~ 1 ~ &~
Le.s. K (D%, el + 4, 78 [c,c]‘

*m g, E 3 * g, % cm (11-9)

has sources which induce composite operators appearing in

- BRS transformations of Eq. (II-6).



id F - ~
1w | A ac o Ay &F exp {1/2%x &) o (1r-10)
4
while the connected geaerating functicnal Is
K= -1i8n2 {I1X-11)

After identifying the classical fields (without carets)

as
a W
A »—,
u U
GJ‘
&W W
q’a " —— wﬂ » - N v
&n Ta
a
SW - W
C = — , € = - o Frr-12)
a GE& 2 GEa
‘'we make a Legendre transformation
- - 4 a,u r
r H )[d;x{.I]'z;l\m~'€‘,‘ca+ca&:‘1
*0, v, ¢ v, nu) (II-13)

which is a functional that generates proper amputated
Green's functions.

The relations dual to Eq. (II-12) are

a o - .611
] U
6Aa
' ir? &
E . e — t - F—
a - a2 C
ﬁca a
&r’ -~ &r!
n = e & - S (I1-14)
a tA ¢ a sy , ;



It is noted that the BRS transformations are nilpoteat

with respect to A ¥ ¥, and c, i.e.

e w (11-15)

This has the consequence of leaving J%.s. ianvariaat.
Therefore, a change of fields according to Eq. (II-6)

will only change < . in 2. On the other hand, the value

of 2 should remain the same, because the Jacobian is unity. .
This leads to )

0= fdi dc AT dp aF exp (i Id‘xz}-

4 - -~ - - - - no~
. fd x {-3 ;[D Wl mmg,cPrg, ¥ Cyy
e i g A L Fl ¢ 2 16
co aul\ar,a Ea-z- go ['C.\-L} (Xr-16j)
which is the same as _
Id‘x ( 5;' érr -, &r a_r:' o LI 81
§A (%) sKE(x)  &w(x) &m(x)  &m(x) ¥ (x)
ar ST L1 i s
+ + = {3 A¥) }
sc_(x) 82.(x) . % H 2 5T (x)
a a a (11-17)

Using the same line of argument, we obtain an equation
of motion for the ghost field by making a change of variable
. c - c * 6c
0= Jaﬁ dc dc dp oF exp {1 da'x &)

. Aua. . ‘ .
- { au[n .cI‘ .E‘} (11-18)

or



b b
5 S - 8L (11-19)
“&Kp §<,

This last equation, tegether with the following
defiaftion

Perte 3_,%;- (o, 450 | {11-20)
gives us the Zundamental W-T identities for QCD

—— e W ——

g - jd‘x (ar_sr 8¢ 8¢ 8¢ 8¢, 4T &,

a U o x ¥
SAL X, Sv B dm&T  &c, &g,
{11-21})
- ¥n a compact aotation, these are writren &t
r*r =0 J1r-22)

S0 far, we have been dealing with bare quantirties.
Their renormalization in the presence of external sources
s . . 7,8 -
has been thoroughly discussed in the literature.” In brief,

it is done multiplicatively according to

‘?’ - fzf @R
8, " (/T D) R, o = 2af (11-23}

The sources for the primary fields are scaled in a manner
to make {;. of Eq. (1I-8) form invariant, i.e.
w 1R
Ju JulII

£~ Ef/ 7z, n, - nf /72, (11-24)
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The venormalized proper amputated Creen's functions then
have the.desiréd normzlization zt the positions of the.
}articles;

The composite operatoer vertices are renormalized so
that X-T identities remain as they appear in Eq. (II-21).
This is accomplished through

K3 = V2 (K:)R

R
L. T la

R (I11-25)
g
£

We shall assume in the following that this renormalizatioa
program has been applied loopwise for the Green's functions.
Ne shall drop the superscript R in the follewing sections; |
all operators there are understood to have been propﬁriy

renormalized, unless specified othexwise.



IXY. PROOF OF FACTORIZATION VIA NARD-TAKAHASHI IDENTITIES

Let us suppose that the Lagrangian contains both
iight and heavy quarks. Our attention will be focussed
or. those Green'~ functiions with only light quarks znd gluons.
For example, in ete - hadrons, when the energy of the virtual
whoton is less than, say, 2 CeV, the relevant heazvy quiark Iis
c, while the light quarks are u,d,s. We also need the photon
. in this case; but since it will be introduced minimally, we
may as well work with QCD alone at this formal level.

Ke shall use tilded quantities to denote those in the
full theory and untilded to denote the corresponding ones
in the light theory.

As said earlier, it will be presently assumed that the
renormalized generating functiorals have been constructed

to all orders in loop expansion, 1.e,

e 1 Ten) (I11-1)
n=0 '

re 3 Ty (I11r-")
n=0

where the subscript (n) specifies the order of loops to
which the quantities are calculated. These generating
functionals have as their arguments classical fields and
composite sources., However, in Eq. (III-1), we zre to |
disvegard all those terms which contain classical fields of 7

the heavy quarks. This is dn accordance with our intent to



study Green's functions with light fields only. An immediate
consequence is that ¥, ¥, m, and A appesring in W-T
identities of Eq. (¥I-21) pertain to light quarks oaly.

It ic convenient To iatrcduce source terms in the

Lagrangian of the light theory

Id4x1‘iight theory !d‘x.éiight theory ; Ni G
1(III-S)
where N, are global parameters and 0i ar¢ the operators
appropriate for Eg. (I~1), which will be further elucidated
later on. Then -

4
NCRER |N-1-0 (171-4)

Operator insertions as above require additional rencrmalization
which is well understood!*®Here we assume that this has been
donc and we will come back to this issue in the next |
section. In the following, to save writing, it will be
assumed that N; is set to zero after differentiation
878 N, has been applied.

Since Eq. (I-1) is independent of the number of
external light lines, then it is a statement of the
generating functional .

- 1 3
r-r*;zfcim;-r (11I-5)

Now, let us accept that Eq., (I-1) is true at the

n-lcop level, i,e.



= 1 v i Y ln-4 1

ey " ey vt L L Cys =l v O
(2} (=) ;2 < () : (

. where CEj) is & setv ¢f coefficients calculated zt the
J-ioep level. This is certainly trie at the tree level
with C(O) = 0. We proceed tc show that Eg., {I-1) holds

also at n+l loop, and therefore inductively it is tTrue

it

¢r all loops.
We first observe that the W-T identities sre satisfied

in loop expansion. AT the avl loop level, we have

nrl ' _
z r(k) ® r(nﬁ_l_k} - 0., (III'7)
., and
n+l
L Ta " Trneroxy = O (rrr-8)
kw

By extending the power counting argument in I, we are
as. ared that the difference between r(n+1) and r(n*l]
- in low energy regime is of order IIMz or smaller, where M

is the generic mass of the heavy quarks. We express this as
ety = Tenen) * ﬁ% T nary (111-9)
A;(ﬂ+1} m3y depen. on M in powers of 2aM and IIMZQ
Row, Eq. _"". 7) is written as
| 0T ;:503 * ‘-'cnon * i:(m)" T (0)

« I Ty * Tipezex) (II1-10)
kel
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Which becomes, upon substituting Eq. (ITI-6) and Eq. (1X1-9)

. X
0= rcO) (P nery * “"“r(n+11’ ey * “r(n+1)’

n k ; 7 X
e gy vy T Dchy =t
k-l j=1 i i
YR L5 Tk
n+li-k-j"'
a1k} * Q?'j.zl ? €4 8N,

(I11-11)
Using'ﬁq. {111-8) and dropping OCIIM‘) teras, this

is simplifizd into

0= Tegy ™ 8mw) * et - F(@
n nvl-k )

, 5T o vl
s lrgg s ol €t) "iE%L;E‘ll
x=1 j=1
* 521 } <t "Lx'il Tty Q113

.in which the sums can be rearranged

n nel-k X nel-j

1 =11
k=1 j=1 j=1 k=1

n n n k-j

] I-1 1 SN ¢90828)
kel j=1  j=1 k-j=0 |

to yield

T



0= Ty * Tgneny T ) " T0)
n"’l"J 6r
- - nel-k-j
g ey L1 Ty @ G2
j=1 3 k=1
n-3 o
3

+ 1 Ny r(nvl-k-j}1 (¥11-34)

k=0
By differ ent*at-ﬂg Eq. (III-8) with rvespect to XN,

and setting M= =0 zad n v 2-§, we obtain

“'1 j

T er |
)3 a+l-k-j
! i_gé—l Tlner-k-5) Y TOR) T N; 3~ G
(¥71-15}
or .
asl-j 5T Al er,
gn01-k-j! }
I . r(k] * Ni * 2 (n"’l‘k'j)
k=1 '
5T &7
— n+i- n+l-
(“(n) & —erf" . _"‘('Eﬂz'u.' T o) 9
(I11-163

This replacement transioTms Eq. {III-14) into

0w ] ® F nel-
Fioy * @liaeyy - 521 I <y )

ot i 1-
* “r(nd} - 3I1 E c(j) = 1 3* rco; {111-17)
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Let us go back To the defining equation of the short-
hand notation (i.e. Eq. (II-22)) and write out various

derivatives
8

$Teoy - Teoy 1 '
-J')' . - [Du’c]a" _8'%)' - 3 4 [C.C]a

-}
Gka

ST,y ST, '
0) . o . ‘III-
_;;i_). gcv, 2=z Ve : (111-18)

Then, Eq. (IXI~17} is written as
n

- 80 : '
Id“x s @, - I 1€y —agdoddye o 0 (112-19)
je1 1 i |
where
b - f'_'fo + J_l | _ I (X11-20)
s, = -IDcl, =z v g c v, I%;
u
- s .1 3 .
e gV ¢ —*3g [c,c] {111-21)
C s o 2 a KE:

ey s, SToy s

¥1 2

SA, §¥Y S¥ am,
8T 5T
(0) ¢ (o) 8
. — - : (111-22)
GWG an Gca Gla
.2

The nilpotency of & {i.e. #°=0) dictates that the local

7,8
solutions ® toEq. (III-19) are either gauge invariant operators

with densities of‘

or operators with densities & F;, where
it is understood that the former cannot be written as the

latter. Py are some polynoaial functionals of the classical
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£ields and composite sources., Needless to say, these deasities

sheuld posgsess the COoTrect mass dimension, which is six in

this context. This set of operators closes under renormalization.
As we promised, we have actually indeacified what O;

should be ia Eqs. (III-3,4). Siace the opeTzior basis in

the solutions of Eq. (XIX-18) is independent of the locp

fuzber, they must then be trees. In other words, they can

all be expressed as

sT
oy ~ _zéﬂl (111-23)

i
It then follows that the coefficient functions multiplied
to the solutions at the n+l loop level must be evaluated

at the same loop level, i.e.

y o M P " 8T ¢,
Mgy = 1 1 Gy~ < T ety —w;
je1 i i 1
(111-24)
orT . nel &t :
BT ey = I I €y -—1%5%211 . (111-25)
je1 i

This, when substituted into Eq. (III-8), completes the
inductive proof

¥e would like to address the important issue of infrared .
and collinear singularities. As it is well-known, they
appear in amplitudes as Ln[pzl for p2 = 0, where p is
some of the externla momenta. Hau we not been able to

absorb thea properly, then our analysis would have been in



jeopardy. This is because operators with logavithmic
vertex factors, if they gxist at all, are simply not local.
In actuality, these infrared and collinear singularities
are absorbed by the marrix elemeats of the operailors,
r“(oi), or equivalentfy 5rse Ni.' It works im such a way

- i '
that both ar_,, ard ) c(j) 1y )fshi in Eq. {III-19)

ilj (n*l-j
ray be plagucd with these singuiarities. However, they
cancel outr complesely in the difference, so that the solutions
as given im Eq. (ITI-24) are local.
This plesasing situation arises, because infrarved
and collinear divergences occur whén scme of the interasl
lincs become almost physical. These coincide with the low
momentum and low invariant mass vegions where effective
vertices are introduced. In other words, iI Ctj) 5r(n*1-j)""1
’
contains all the integration regions which potentially may..
give softrdivergences in A;(nOI)‘ The difference is then

frce of such malaise. Thereupon, the solutions of Eq.

(I11-19) are local, as given ina Eq. (111-24).



IV. RENCRMALIZATION OF O; AND RENORMALIZATION GROUP FOR C

[ add

A Renormalization of Oi

In the previous section, we have proved facterization,

zssuming the existence cf some suitable procedure which
accomplishes Eq. (III-6) in the rencrmalized form. In the
ercof, especially in going from Eq. (III-8) ¢ Egq. (I1r-1s),
it was assumed that ar{k)/sxi cotld be properly rencrmalized.
That we have at hand such a pregranm has been discussed by
others,

We want o arvgue in the fcllewiag thav the counter
terms introduced for operators Oi in fact cancel cut
internally; the relevant counter terms which mecd to be
inserted into the Lagrangian are only those in Egs. (II-23,
24,25). Because of this, the scheme for renormalizing
the operators may be quite different from the scheme for
making ordinary Green's functions finite.

Our assertion is true for a rather trivial reason.

We illustrate it with an example. Consider the diagram

of Fig. 1. Here, R indicates that ordinary renormalizations
of Eq. (I1-23) have been applied. Let us first project out
the 1/M2 part from the vacuum polarization and extract out
the associated operator vertices. Then, these operaters

are renormalized in whatever convenlent way we wish. Llet

us donate this by R'. The original diagram will be redrawn



in Fig. Z, where ch] is the one loop coefficient function

and 0, is an induced operator. This is & mere rearrangement;

1
clearly, the counter term due to R' simply cancels out and can
be arbitrarily chosen.

Now, we look at what we denote by Alz. Any possible
infrared or collinear divergence will cancel in this
combination. (Actually, there is none in this example.)

The IIM2 part has a structure which is polynomial in momentum.
We extract out the IIMZ part and call the coefficlent function
C(Z] and the induced operator 62' This is depicted in
Fig. 3. Nore how this rearrangement scheme is precisely
of the form dictated by the W-T identities of Eq. (III-24).
.Then, Fig. 1 is redrawn in Fig. 4. Due to the definition of
c(z)lnz.'nzr gocs as 1/M¢ and can be dropped. Thus, we have
completely factorized out the lle contributions in this
example. Note that although C(Z) depends on how we choose
to renormalize the operator 01, the sum (c(l)rcl)(ol) +
C(z}r‘(o)(ozl)/.\l2 does not.

This argument can be easily extended to cover the -
general case. The important point is that since we are
adding‘zcro to ;. we may split the zero into any two

parts at our convenience.



B. Renormalization Group Equations For o

Factorization proved in Section II] does not necessarily
insure the calculability of the coefficient functions ¢,
without which its usefulness is diminished. In the
following, we shall show that Ci's obey a set of renormalization
group equations and can be calculated.

Let us first recall that we are dealing with a theory
" with massless gluons and massless quarks. In order to
avoid mass singularities and at the same time to assure
the deboupling of heavy quarks, we are instrucred to
choose a subtraction point p for Green's funcrions szt sone
" Euclidean point (u2 << M%).

This procedure necessarily introduces operators which
have 'relevant' dimension four, although their naive nmass
dimension is six. For example, the operator F:v [32+u2)F:V
:vpgv)’
is four. We shall regard 04, @s an indepéndent operator.

has a piece uz 042 - uz(-% F whose relevant dimension
There are then two choices we c¢an make with regard to its
renormalization. If we take it as a dimension six oeperator,
then oversubtraction is called for. On the other hand, we

may count it 4s a dimension four operator, then the subtraction
should be nﬁrmal.

. For the fermion operators, let us subtract such Phat
chiral invariance is respected., Then, we shall induce an

operator T({in)z-uz)inw. Agiain, the part u%o41=-u2$b¢
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@may be regarded either as a dimension four or a dimersion six
operatar iﬁ.subtraction.

As we explained earlier, we are quite free te pick
either of these alternatives. We_find it convenient to

regard operators like 0;1 and 0,2 as dimension four operators

and suhtract them normally. The reason is that otherwise when

we come to decoupling the renormalization group equations,
we have To express the oversubtracted operators in terms
of the normally subtracted ones in order to form an independeat
basis. This effort is cumbersome and unneCessary.

Let rB'F be the light Green's functions with B external
gluons and.F extemal light quarks. EB‘F will be similarly
,dqfincd. Ghost external lines can be added, but let us not

do so at this point. Then Eq. (I-1) is written as

-

B,F_ .B,F, 1 3,F .o
ree reet s " I oGy, 1707 (0y,) (Iv-1)
N,a

where N denotes the dimension of the operators and a is an
index to label different operators of the same dimension.
Ke shall list and give a detaliled discussion of these
opcrators in a subsequent paper. For the present purpose,
all we need to know is that N « 4,6, All operators will
be normalized at the subtraction point u to their tree
vertex values. '

It is important to note that the normalizatien
r3.F and T3°F w113 zolate Cia'?

conditions imposed on



TO Céb‘s in a simple way. For example, let us demand that

2 0 '0,2

(rer " ) and (F o2 )} should satisfy, respectively,

the same normalization conditions at the subtraction point.

-i tpv Zta

-——n e T AT - - 3
Then the coefficient function for =T FiF, aust be the

saxze as “hat for uzohz. likewise, the coefficient fuactiox
for iE(iD)Zibﬁ equals that oI uzcal. Beczuse of this,
we will only nead to sclve the equations Zor L b“si

By standard argument, the scaling equations Zor the

light theory are

- - 3
38, v s, 55 - Bry - Fr) 8 F - o (1V-2)
' 3 '
Ol R L $5 - BYg - Frpdéy, o
B,F - ' -
* Yyanp? T O) = 0 (1v-3)

where we have taken the convention to sum over repeated

indices and

= d - - d
Bg LF R L Bu ”Hﬁ a

= d = é_.
Zvg VEr tn 2o, 2vg = a5 i 25
P ] _
Tva,nb = (Z¥ 35 2 ya,np (= O foT NM<N) (IV-4)

Z is the operator mixing matrix

rbare (OM:rc) "% 2 z-Plz (Z-I)Ma,Nb rB'P{ONb) |
(Iv-5)
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For the full theory, we have

o 5 Eg'g_g" By 3w * B 55 - 3% Frp) ToFeo
‘ {Iv-6)
wherc the saomalous dimensions are similarly defined.
The only new symbol is

RS T : (1v-7)
which will ﬁive IIM4 effects and hence will be ignored.

¥e substitute Eq. (IV-1) into Eq. (IV-6) and make use

of Eqs. (IV-2,3). This gives

;_i (a8 :_g v 28 3 - BaYB-FA*(F)I'B’F

. ;% PR (6 e B, 3 v 8. 2 G |

Yyta.No) O = O e
where

vl B = By - By st av-9)

and 't' stands for transpoéition of the matrix. !Mote-that
Lq. (Iv-8) is an inhomogencous equation for ch's due to the
presence of the first part. Morcover, AB's and ay's contein
large ta's. Thus, as it stands, this equation is not
'ﬁqtticularly useful. The same apparent difficulty was
encountered in I and was resolved with the use of certain

counting identities. This method works here as well,
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3y a similar consideration as ir I, we c2n ecaslily prove

the f~llowing counting identities

b
P o - §

¥

wh,F @ ) 8, .3,F
H (042) (aia"g“s_g"z)-

5 oB,F B,F
g %E IO e 21700 (045)

% F (0,5)

8 F 0 =« 0 | (v-20)

where the newly introduced operators are

- i S, (.85 ,a "~ = W \
043 i Id x {3Aa Au * 8, Sy [D .c]a.
I

Opq = 1 [d4x 3, E; [Du,c]3 (IVv-11)

S is the action corresponding 1o &, . cf Egq. (¥I-5) without
the gauge fixing term. 041 through 0,4 3rC the conly
operaiors of dimension four which appear in the factorization
formula. Now, the crucial.point is that with the use of

Eq. (IV-10), we can write the first part of Eq. (IV-8) as

2 3 d
u [Aag T 8, 35 - Bayy - FaY[l

- ¢, 2Fo,) (1v-12)

4a
where C,_ are independent of B and F. (They may be expressecd
in terms of AB's, 8y's, etc., but the details are not needed
fov our purpose,) Substituting Eq. (IV-12) iato Eq. (IV-8),.

we chtain ‘ ‘o
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B,F | 3 3_ -3 | LT

I (0g,) Ll 3 Bg g B 3a) $6a,6b Y6a.6b} Ceb
BlF v L .3—-1- ¢

+ IO, ) LG, 0 (s e 83 Y Ba 537 Cia

- g (Iv-13}

- Yea. b Cap ~ Yia,6b Cev!
with this form, we may invoke the independence of the operators
and assert that the equations for cﬁb decouple from the rest,
i.e.

(O R Bg %E" 8, 337 S6a,6b - Yea,60) Cop = °

(IV-14)
This is the desired set of equations.
We shall give ia a sepaTate paper an explicit calculation

based on this work with application to e’e” + hadrons.
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V. CONCLUSION

We have used W-T identities due to BRS transformations
to prove the factorization formula Eq. (I-1) for QCD,
which takes stock of heavy quatk effects in low energy
light quark and gluon physics. It is amusing to note the
accomplished simplification, compared with I.

Qur method gives a precise meaning to the notion of an
effective Lagrangian; in particular, a well-prescridbed
renormalization procedure for the local operators is
shown to be self generated by the theory. This is a major
distinction over the naive approach, where one is nagged
by issues of renormalizability of the effective interaction.

Note further that the coefficient functions or,
equivalently, the efiective couplings can be reliably
calculated to any order of accuracy in an asymptotically
free theoryl® we need to account for only the nearby heavy quarks
at any energy. The far away quarks will be suppressed by
asymptotic freedom, in addition to the factor lle.

In & companion- article%lwe shall give a detailed
discussion of the structure of the operators and an
explicit calculation of the ancmalous dimensiaons to one
loop order. The application to ¢*e” + hadrons will be used
as an exzmple of our approach. There, qz « the energy

squared of t » virtual photon ~ is quite large. We nay
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compute operator Ratrix elements in powers of the running

coupling constant E[qz} via Eq. (xv-3).
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Fig.1l.

Fig.2l.

FIGURE CAPTIONS

A fourth order diagram whose heavy mass dependence is to be
extracted. R denotes renormalization of the divergences of

the Green's functions.

The heavy mass dependence is 1solated from the vacuum

polarization tensor in the form of —Lfl 01. Note that

the rcnormalization of 01. denoted by R', can be differently

Fig- 3.

Fig.4.

chosen from R.

Further heavy mass dependence is isolated after —lIl 0
has been extracted. This is denoted by —131-02.

The fourth order graph of Fig. 1 is rearrawgcd. 3,% can

be discarded to the accuracy of O(IIM ).
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